
crease in the total continental flux of Sr or a
change in its isotopic composition, or both. The
contribution of G-B to the global cycle

SdaSr–SW

dt D 5 SJGB

NSr
D · ~aSr–GB 2 aSr–SW!

(2)

is equal to 0.82 3 1024 My21 for the low
estimate of 87Sr/86Sr and 1.86 3 1024 My21

for the high estimate of 87Sr/86Sr in Table 2.
This rate of change is a factor of ;2.3 to 5.3
higher than the observed average value of
daSr-SW/dt ;0.35 3 1024 My21 for the past
40 My.

We also note that use of a 87Sr/86Sr value
of 0.711 for global river and continental flux
creates an imbalance in the Sr cycle. To
rectify this situation, we need to lower the
continental flux isotopic composition to
about 0.71049 [similar to the value proposed
in (1)]. Also, the additional global continental
Sr flux from groundwater would cause a rise
in 87Sr/86Sr of 0.0095 over 40 My if left
unbalanced. This is higher by a factor of 7
than the observed rise over the past 40 My.

Thus, we conclude that the groundwater
data have an enormous effect on the interpreta-
tion of the seawater Sr isotope balance. Al-
though we do not claim that the new values
presented in Table 2 should be considered as
final, these data urge caution about overinter-
preting Sr isotope data from a few local water-
sheds in this area. For example, trying to use the
seawater Sr isotope curve to infer the detailed
tectonic uplift history of the Himalayas as well
as for estimating effects on global climate
change still involves considerable uncertainty.
Because of the highly variable nature of 87Sr/
86Sr in the G-B river system, reliable average
values are difficult to estimate.
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Genetic Evidence for Two
Species of Elephant in Africa
Alfred L. Roca,1 Nicholas Georgiadis,2 Jill Pecon-Slattery,1

Stephen J. O’Brien1*

Elephants from the tropical forests of Africa are morphologically distinct from
savannah or bush elephants. Dart-biopsy samples from 195 free-ranging African
elephants in 21 populations were examined for DNA sequence variation in four
nuclear genes (1732 base pairs). Phylogenetic distinctions between African
forest elephant and savannah elephant populations corresponded to 58% of the
difference in the same genes between elephant genera Loxodonta (African) and
Elephas (Asian). Large genetic distance, multiple genetically fixed nucleotide
site differences, morphological and habitat distinctions, and extremely limited
hybridization of gene flow between forest and savannah elephants support the
recognition and conservation management of two African species: Loxodonta
africana and Loxodonta cyclotis.

Conservation strategies for African elephants
have consistently been based on the consen-
sus that all belong to the single species Lox-
odonta africana (1–3). Yet relative to African
savannah elephants, the elephants in Africa’s
tropical forests are smaller, with straighter
and thinner tusks, rounded ears, and distinct
skull morphology (2–11). Although forest el-
ephants are sometimes assigned subspecific
status and designated L. a. cyclotis, their de-
gree of distinctiveness and of hybridization
with savannah elephants has been controver-
sial and often ignored (2–12). Recently, a
comprehensive morphological comparison of
metric skull measurement from 295 elephants
(10, 11) and a provocative molecular report
limited to a single individual (13) noted ap-

preciable distinctions between forest and sa-
vannah specimens.

Here we report the patterns and extent of
sequence divergence for 1732 nucleotides from
four nuclear genes (14) among 195 African
elephants collected across their range in Africa
and from seven Asian elephants (Elephas maxi-
mus). African elephants were sampled, with
biopsy darts (15, 16), throughout the continent,
including individuals from 21 populations in 11
of 37 African elephant range nations (Fig. 1).
Based on morphology (2–11) and habitat (17,
18), three populations were categorized as Af-
rican forest elephants, whereas 15 populations
in southern, eastern, and north-central Africa
were categorized as savannah elephants (Fig.
1). DNA sequences from four nuclear genes,
including short exon segments (used to estab-
lish homology to mammalian genes) and longer
introns (which would evolve rapidly enough to
be phylogenetically informative), were deter-
mined for all elephants (19). The genes include
BGN [646 base pairs (bp)], CHRNA1 (655 bp),
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GBA (100 bp), and VIM (331 bp), with se-
quence from all four genes obtained for 119
individuals. An alignment of variable sites and
the composite genotypes are presented in sup-
plemental information (20). Among 1732 bp,
73 sites were variable and 52 were phylogeneti-
cally informative. These nucleotide variants de-
fined nine unique savannah genotypes among
58 individuals and 24 unique forest genotypes
among 24 individuals. We observed nine genet-
ically fixed nucleotide site differences between
Asian and African elephants (BGN 121, 155,
219, and 513 and CHRNA1 011, 079, 274, 301,
and 548) and one that approaches fixation
(BGN 505). There were five fixed site differ-
ences between African savannah and forest el-
ephants (BGN 304, 485, 508, 514, and 569) and
two that were nearly fixed (CHRNA1 251 and
GBA 20) (20).

Three methods of phylogenetic analysis
(minimum evolution, maximum parsimony,
and maximum likelihood) (21–23) revealed a

concordant deep genetic division between the
forest and savannah populations of African
elephants (Fig. 2). The forest elephants of
Dzanga-Sangha, Lope, and Odzala grouped
together, separate from 15 savannah popula-
tions, which formed a distinct phylogenetic
clade or lineage. An estimated 94% of the
observed genetic variation (FST 5 0.94, P ,
1025) (24, 25) was due to differences be-
tween forest and savannah elephants and 6%
to intragroup differences. Mantel tests (26)
revealed only marginal association of genetic
versus geographic distance (r 5 0.19, P 5
0.03), and that association was attributed
completely to forest versus savannah popula-
tion differences (P . 0.05 for forest or sa-
vannah populations tested separately).

Although forest and savannah elephants
formed two genetically distinct groups, se-
quences from populations within the two cate-
gories could not be distinguished hierarchical
analysis of molecular variance (AMOVA) (24,

25). For example, we could not genetically
differentiate the forest elephants in Dzanga-
Sangha from those of Lope (FST P . 0.05).
Despite the extensive geographic distances sep-
arating them, the savannah populations in
southern, eastern, and north-central Africa were
genetically indistinguishable (FST P . 0.05).
Forest elephants are genetically more diverse
than savannah elephants (Fig. 2). The average
number of within-group pairwise differences
among 24 forest elephants was 1.74 as com-
pared with a value of 0.06 among 58 savannah
elephants (24, 25, 27). Each forest elephant had
a unique composite genotype, whereas the 58
savannah elephants defined only nine distinct
genotypes (20). Forest elephants displayed larg-
er numbers of heterozygous nucleotide sites
than did savannah elephants (an average of 3.54
heterozygous autosomal sites per individual in
forest elephants versus 0.39 for savannah ele-
phants) (20). These observations suggest a re-
cent founder event in the history of the savan-
nah metapopulation. A potential time venue for
the bottleneck is indicated by fossil evidence,
which suggests that the savannah elephant’s
range greatly expanded at the end of the Pleis-
tocene, after Elephas iolensis, the predominant
African species, became extinct (3, 12).

The genetic and phylogenetic distinctive-
ness was evident without exception between 36
sampled forest elephants from three populations
and 121 savannah elephants collected in 15
populations throughout sub-Saharan Africa.
Each savannah population was genetically clos-
er to every other savannah population than to
any of the forest populations, even in cases
where the forest population was geographically
closer. Individuals from two “indeterminate”
populations [Mount Kenya and Aberdares (Fig.
1)] contained exclusively savannah elephant ge-
notypes (see Fig. 2, FST 5 0.88, P , 1025 in
comparing both populations to three forest pop-
ulations). Genotypes found in the third “inde-
terminate” population, Garamba, were diverse
and predominantly nested within the forest el-
ephant clade in the phylogenetic analyses. The
forest populations (including Garamba) were
genetically closer to each other than to any
savannah populations, including several that
were geographically close. A single exceptional
Garamba individual, GR0021, contained five
signature sequence sites that were diagnostic
for savannah elephants (BGN 304T, 485T,
508G, 514G, and 569C), as well as a single site
(GBA 79T) that was diagnostic for the forest
elephants.

The high level of genetic distinction is dem-
onstrated by calculation of FST values among
savannah, forest, and Asian elephant popula-
tions as well as by the computation of genetic
distances (average pairwise differences) among
them (24, 25, 27). Highly significant differen-
tiation is evident between savannah, forest, and
Asian elephants (FST P , 1025) but not be-
tween Garamba and forest elephants (P .

Fig. 1. Locations of sampled African elephant populations. Circles indicate sampling locations and
population abbreviations. Green circles are forest populations (the number of elephants sampled is
given here in parentheses after the location): DS, Dzanga Sangha (17); LO, Lope (16); and OD,
Odzala (3). Red circles are savannah populations: AM, Amboseli (6); BE, Benoue (8); CH, Chobe (5);
HW, Hwange (5); KE, Central Kenya (9); KR, Kruger (10); MA, Mashatu (7); NA, Namibia (14); NG,
Ngorongoro (10); SA, Savuti (6); SE, Serengeti (7); SW, Sengwa (6); TA, Tarangire (7); WA, Waza
(14); and ZZ, Zambezi (7). Black circles are three populations that were not classified a priori in
either category: AB, Aberdares (17); GR, Garamba (18); and MK, Mount Kenya (3). Garamba is
located in the Guinea-Congolian/Sudanian transition zone of vegetation in Congo, which includes
a mixture of forest and secondary grasslands (17) suitable for both African elephant groups.
Savannah, forest, and morphologically intermediate elephants have been reported in Garamba (11,
33). The forests of Mount Kenya and Aberdares are currently isolated by surrounding bush (18), and
both have elephants that more closely resemble the savannah morphological phenotype. However,
these forests may have recently been contiguous with other forest habitat (17, 18) and retained
relict forest elephants. Orange indicates current African elephant range (1); historic range is in
bright yellow (10). The dotted pattern indicates the extent of tropical forest (hatched) and
forest/savanna transitional vegetation zones (17). Pie charts indicate the combined population
frequencies of GBA haplotypes: I, [C.C]; II, [C.T]; and III, [T.C] for nucleotide sites 20 and 79,
respectively, in Asian, forest, Garamba, and three savannah regional populations. N 5 number of
elephant chromosomes.

R E P O R T S

24 AUGUST 2001 VOL 293 SCIENCE www.sciencemag.org1474



0.05). The genetic distance (average pairwise
difference) between forest and savannah ele-
phants is 9.0, which is 58% of the distance
between Asian and African elephant genera
(average 5 15.5) (24, 25, 27). Tests for molec-
ular evolutionary rate differentials did not re-
veal significant differences (P . 0.05) for the
two African groups (24, 28, 29). Considering
the estimation from fossil evidence for the di-
vergence time between the two genera as 5
million years ago (12), the results suggest that
forest and savannah elephants diverged approx-
imately 2.63 (60.94) million years ago (24, 27,
29), which is comparable to species-level dis-
tinction in other mammalian taxa, including
elephants (12, 30, 31). This estimate should be
considered as a maximum age, however, be-
cause the more recent genetic homogenization
of the savannah elephants would inflate genetic
distance as a consequence of a recent founder
event.

Genetic distinctiveness between forest and
savannah elephants is also apparent when indi-
vidual gene variation is examined. For GBA,
two variable sites in African elephants define
three haplotypes ([C.C], [C.T], or [T.C] for
nucleotide sites 20 and 79, respectively) that
have large forest versus savannah frequency
differences (Fig. 1, exact test P , 1025 for
forest versus savannah). The predominant hap-
lotype in savannah elephants is [T.C] (frequen-
cy 5 0.96), whereas alternative [C.C] and [C.T]
haplotypes comprise 100% of the forest ele-
phants, suggesting that reproductive isolation
exists between the two groups (Fig. 1). For VIM
and CHRNA1, complete and exact haplotypes
could not be determined for individuals het-
erozygous at two or more nucleotide sites, be-
cause gametic phase cannot be assessed (for
example, for a two-locus genotype, does a dou-
ble heterozygote G/C,T/A individual contain
GT 1 CA or GA 1 CT haplotypes?). Howev-
er, among forest and Garamba elephants, poly-
morphisms occurred at six nucleotide sites in
VIM that were genetically monomorphic in sa-
vannah elephants (20). Similar differences in
the occurrence of polymorphic nucleotide sites
were apparent within CHRNA1: All sites that
were variable among forest and Garamba ele-
phants were fixed in savannah populations,
whereas the two sites that were variable in
savannah elephants were fixed in forest and
Garamba elephants (20). Likewise, both
CHRNA1 and VIM had an insertion/deletion
variant limited to forest and Garamba elephants
(20). The presence of these deletion variants in
Dzanga-Sangha, Lope, and Garamba also is
consistent with the recent occurrence of gene
flow among these forest elephant populations
across the Congolian forest.

The X linkage of BGN seen in other mam-
mals (14) was affirmed in elephants by the
presence of heterozygous nucleotide sites
among females but not among the hemizy-
gous males. Nineteen variable sites in BGN

were used to identify 169 haplotypes from 55
males and 57 females. A minimum spanning
phylogenetic network of the nine unique
BGN haplotypes observed (Fig. 3) showed
clear differentiation of a single distinct Asian
haplotype (n 5 13 chromosomes), two Afri-
can savannah haplotypes (n 5 103 chromo-
somes; including Aberdares and Mount Ke-
nya), and six African forest haplotypes (n 5
53 chromosomes; including one Garamba in-

dividual). For BGN, the number of nucleotide
changes separating forest from savannah el-
ephant haplotypes (six steps) was nearly as
large as that separating either from the Asian
elephant haplotype (seven steps). The BGN
haplotypes present in the forest elephant pop-
ulations were not found among savannah el-
ephants, whereas haplotypes seen in the sa-
vannah elephants were not present in the
forest populations (P , 1025, exact test of

Fig. 2. Phylogenetic
relationships for Asian,
African forest, and
African savannah ele-
phants inferred from
combined analyses
(21–23) of 1732 bp
(BGN, CHRNA1, GBA,
and VIM); the two-let-
ter codes for African el-
ephant populations are
given in Fig. 1. Asian el-
ephant individuals are
coded “Ema.” The min-
imum evolution (NJ)
tree is shown. Concor-
dant trees were ob-
tained by MP (tree
length was 248 steps;
CI 5 0.927, RI 5 0.934)
and ML (-ln L. 5
2774.53539) analyses,
which produced the
same topology in de-
fining the three groups.
Bootstrap resampling
support (100 itera-
tions) is listed on
branches for NJ (top),
MP (middle), and ML
(bottom) analyses for
nodes supported by all
three methods.
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the forest versus savannah haplotype frequen-
cies) (24, 25, 32), suggesting a high degree of
reproductive isolation between the forest and
savannah populations. Taken together, the
distinction affirmed by independent unlinked
nuclear genes (Figs. 1 and 3) (20) offers
strong support for the concept of appreciable
genetic divergence between the African sa-
vannah and forest elephant populations.

There was no molecular genetic evidence of
hybridization among 3 forest and 17 savannah
elephant populations [defined a priori, plus Ab-
erdares and Mount Kenya (Fig. 1)]. In Ga-
ramba, however, three individuals (GR0021,
GR0035, and GR0037) showed genotypes with
a combination of forest and savannah taxon-
specific alleles, suggesting a history of limited
hybridization in the ancestors of this population
(20), as has been suggested by some (33), but
not all (10, 11). GR0021 grouped with savan-
nah elephants in the phylogenetic analysis,
whereas animals GR0035 and GR0037 had
largely forest genotypes (Fig. 2) except for the
GBA [T.C] haplotype, which is absent in forest
elephants but predominant in savannah ele-
phants (Fig. 1). The paucity of gene introgres-
sion between forest and savannah populations
even near regions of potential physical contact
[that is, in north-central Africa or near Garamba
(Fig. 1)] suggests that hybridization in nature is
rare and perhaps minimized by behavioral or
physiological reinforcement. In this regard, no

elephant from any population, including Ga-
ramba, displayed a predicted F1 hybrid geno-
type (that is, heterozygous at the genetically
fixed sites between savannah and forest ele-
phants), affirming the lack of gene flow or
hybridization among the sampled elephants.

The molecular results of a pan-African phy-
logeographic elephant survey reported here of-
fer support for the idea that a long period of
adaptive evolution (estimated at 2.63 6 0.94
million years) separated the savannah and forest
elephant lineages. As such, the results strongly
support recognition of species-level distinctions
between African elephant taxa (5–11). Al-
though reproductive isolation is the principal
criterion for species recognition according to
the Biological Species Concept (34), local hy-
bridization or even the presence of a “hybrid
zone,” as may have occurred in Garamba,
would not preclude species recognition, be-
cause the genetic integrity of the parent species
remains intact (34, 35). Hybrid zones that fail to
spread or homogenize the genetic distinctive-
ness of contact species have been observed with
scores of other species (35, 36). These consid-
erations, along with the combined morpholog-
ical, ecological, and molecular data, are cogent
indicators that there should be species-level rec-
ognition for Loxodonta africana (Blumenbach
1797), the African savannah elephant (37) and
Loxodonta cyclotis (Matschie, 1900) (4), the
African forest elephant. Given the rapid deple-

tion of both forest and savannah elephant num-
bers in the past century and the ongoing de-
struction of their habitats, the conservation im-
plications of recognition and species-level man-
agement of these distinct taxa are considerable
(1, 10, 38).
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The Ground State of the Ventral
Appendage in Drosophila

Fernando Casares* and Richard S. Mann†

In Drosophila melanogaster, the antennae, legs, genitalia, and analia make up
a serially homologous set of ventral appendages that depend on different
selector genes for their unique identities. The diversity among these structures
implies that there is a common ground state that selector genes modify to
generate these different appendage morphologies. Here we show that the
ventral appendage that forms in the absence of selector gene activity is leglike
but consists of only two segments along its proximo-distal axis: a proximal
segment and a distal tarsus. These results raise the possibility that, during
evolution, leglike appendages could have developed without selector gene
activity.

Selector genes encode transcription factors
that specify the identity of segments and ap-
pendages in insects and vertebrates (1, 2).
The Hox genes are a subset of selector genes
that are required for generating morphologi-
cal differences along the antero-posterior axis
of most animals. Studies in the fruit fly,
Drosophila melanogaster, demonstrate that

altering Hox function can cause one body
part to be transformed into another. Perhaps
in large part because they govern the devel-
opment of entire body parts, changes in how
Hox genes, and selector genes in general,
were used during evolution have led to mod-
ifications in animal body plans throughout
the animal kingdom (2, 3).

Fig. 1. The ground state ventral appendage is a leglike appendage with two segments. (A) A
wild-type (WT) T2 leg has five segments from proximal to distal: coxa (co), trocanter (tr), femur
(fe), tibia (ti), and tarsus, which is subdivided into tarsal subsegments 1 to 5 (t1 to t5) and a distal
claw (c) (15). Five bristle types are indicated: bracted (green arrows), unbracted (red arrows),
curved, spurs (sp), and apical (ap). The inset shows a closeup of the proximal femur where both
bracted and unbracted bristles are present. The inset comes from a different wild-type leg. (B) A
wild-type antenna consists of four segments, from proximal to distal: antennal segments 1 to 3 (a1
to a3) and arista (ar). (C) Antp2 hth2 T2 leg. Most of this appendage is mutant ( y2). The recovered
tarsal segments (t1* to t5*) and single proximal segment (Pr*) are indicated. The inset shows a
region of a similar appendage with bracted and unbracted bristles. The asterisk [also in (D)]
indicates a proximal plate with unbracted bristles that is typically associated with the ground state.
(D) An hth2 antenna results in an indistinguishable appendage morphology as seen in (C). Most of
this appendage is mutant ( y2). (E) A high-magnification view of part of the t1* and Pr* segments
of an hth2 y2 antenna. The same bristle types are observed in Antp2 hth2 T2 legs. (F) An hth2 T1
leg with proximal fusions. Transverse row bristles (arrow), which are indicative of a first leg identity,
are observed.
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